Chisel: A System for Debloating C/C++ Programs

[to be completed] , Mayur Naik

“Perfection is achieved not when there is nothing left to add,
but when there is nothing left to take away.”
© — Antoine de Saint-Exupéry

Growth of Software Complexity

O Android App (Avg. APK Size) JOK (#Classes)
Linux (LOC) O Aerospace SW (LOC)

100000

10000

10000

Size

100x

Time

‘ Consequence: degraded performance and expanded attack surface ‘

Solution: late-stage customization by removing
redundant functionalities

Program Debloating

D Checker w.r.t
_='O P&S D
5oy o,
Program) ERoxf8) Static Success
—> —>| —> —_—

% 7 V & Reduced OQ Correct
0\
e T L L =) Frogram
Spec Statistical Dynamic rog

Model

Failure
[Augmentation]
Problem Statement

Given a program P to be minimized and a property test
function S, find a 1-minimal program P’ that is a subset
of P and satisfies the property.

The property test function can be expensive to invoke.

University of Pennsylvania

Desired Properties

Minimality: trim code as aggressively as possible w.r.t the spec
Efficiency: find the minimized program in a scalable manner
Robustness: avoid introducing new vulnerabilities
Naturalness: produce maintainable and extensible code

Generality: handle a wide variety of programs and specs

10 widely used UNIX utility programs
Each program has a known CVE
Only supporting command-line options as BusyBox

Code, benchmark, and docs: https://chisel.cis.upenn.edu

More Effective than State-of-the-art

Learning-Guided Delta Debugging

Feature Label

Learn a policy via reinforcement

P“ SRS u/ﬁ 7/]' learning
Guide the search based on the
prediction of the learned policy

orade Discard nonsensical programs
Statistical Model (testscript) upfront using known hard-rules

Most Likely Candidatefor Pi.4

Global-level Reduction r\ Local-level Reduction

Alternate between
structural levels of the
program to enhance
scalability

W Chisel W static W Original

:

o
ogva”g"&@w’

I Chisel W Perse B C-Reduce

Hours

#Statements

¢ &
& & &
h &

Reduction Size Reduction Time

v |int f1() { return 0; }
1[R[3]rf x |int f20) { return 1; }
- int £3() { return 1; }
2 ¥ lint ta0) { return 13 }
3 X |int f5() { return 1; }
4 f4 v |int f6() { return 1; }
int £7() { return 1; }

Z 14 Y [int main() { return’f10; }

x

U

int f1() { return 0; }
int main() { return f10); }

Contact: {

,mhnaik}@cis.upenn.edu

Security Hardening
#Gadget #Alarms

Program | CVE | Original Reduced Original Reduced
bzip-1.05 x 662 298 55X 1,991 33 98X
chown-8.2 v 534, 162 70X 47 1 98X
date-8.21 v 479, 233 51X 201 23 89X
grep-2.19 v 1085 411 61X 619 31 95X
gzip-1.2.4 v 456 340 25X 326 128 61X
mkdir-5.2.1 X 229, 124 46X 43 2 95X
rm-8.4 X 565 95 83X 48 0 100X
sort-8.16 v 885 210 76X 673 5 99X
tar-1.14 v, 1528 303 80X 1,290 19 99X
unig-8.16 X 349, 109 69X 60 1 98X
Total [6752 2,285 66X | [5208 243 95X

Reduced potential attack surface Feasible manual inspection

Assessing the Effect of different Pieces

The significant performance improvement is a result of
incorporation hard-rules as well as learning-guided search

Only hard-rules

32% 21% 47%

Only learning-guided search

