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: deeTrek IS 3 deep learning approach that represents coqlebases as databases - Context extraction from the resulting graph is done via c CodeTrek models perform better; especially on
with rich relathnal schemgs. CodeTrek gmbeds code using a set of walks that b|a§ed random walks. over the graph, in a fashion long-range () and complex logic tasks (€3).
can traverse different relations. The relational representation allows CodeTrek to defined by a walk specification.
uniformly represent diverse kinds of program information and leverage program- g < Task CodeTrek GGNN Code2Seq GREAT CuBERT
analysis queries to derive new semantic relations. Task: Module-level Exception Prediction VarMisuse 91% 69% = 82% 89%

« CodeTrek outperforms state-of-the-art neural models by 2-19% points. Relations: { stmt, expr, exception-successor, call-graph, ... } VarMisuseFun 70% 54% 52% 89% 84%

Anchors: { n | n.type = stmt A n.kind = except Exception 63% 28% 30% 44% 42%

Can be learned Bi _ A g'value:?)[HOLE] ; . ExceptionFun 65% 51% 51% 68% 69%
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 CodeTrek uses a declarative program analysis framework (Semmle) to produce a L o 0 0 0 0
. | . Prog y oL jo - The walk generator traverses the graph by biasing VAR AEE G M | MMw | 70% Sk Sl
rich, easily extensible representation of context as a relational database. . . :

« Semmle converts codebases in C, Java, Python, etc., into relational databases that traversal of edges according to neighbor's node type.

! ! T » If no bias is specified, walks are simply fair random walks. g CodeTrek produces robust models.

capture the underlying structure and semantics of code, as well as a query language,
CodeQL, for specifying program analyses to compute new semantic information.

« Different probability mixes for different node types

Sampling walks is a promising strategy for robustness.
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 CodeQL enables CodeTrek to query code as if it were data. enlcouratg?[e ”;e kmodel to sample walks that are more
relevant to a task.
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« CodeTrek interprets the produced relations as a graph. | node vocabulary| | edge vocabulary | oy ant! test | py Omit call-graph relation
 Each named tuple is represented by a node with the values of the tuple as its features. % o di/ accuracy g q 2
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each referential integrity constraint R. A — S.B between nodes representing tuples of 9 Richness of semantic information available to
relations R and S. positional positional positional @ the model has a significant accuracy impact.
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