CodeTrek: Flexible Modeling of Code
using an Extensible Relational Representation Go g|€ @PGDD

Pardis Pashakhanloo!, Aaditya Naik!, Yuepeng Wang?, Hanjun Dai’, Petros Maniatis’, Mayur Naik!

'University of Pennsylvania, *Simon Fraser University, >Google Brain

: deeTrek IS 3 deep learning approach that represents coqlebases as databases - Context extraction from the resulting graph is done via c CodeTrek models perform better; especially on
with rich relathnal schemgs. CodeTrek gmbeds code using a set of walks that b|a§ed random walks. over the graph, in a fashion long-range () and complex logic tasks (€3).
can traverse different relations. The relational representation allows CodeTrek to defined by a walk specification.
uniformly represent diverse kinds of program information and leverage program- g < Task CodeTrek GGNN Code2Seq GREAT CuBERT
analysis queries to derive new semantic relations. Task: Module-level Exception Prediction VarMisuse 91% 69% = 82% 89%

« CodeTrek outperforms state-of-the-art neural models by 2-19% points. Relations: { stmt, expr, exception-successor, call-graph, ... } VarMisuseFun 70% 54% 52% 89% 84%

Anchors: { n | n.type = stmt A n.kind = except Exception 63% 28% 30% 44% 42%

Can be learned Bi _ A g'value:?)[HOLE] ; . ExceptionFun 65% 51% 51% 68% 69%

Codebase = Relational Database - Relational Graph v {“j:)i?‘l’go”'success"“ , StME: 3, expr: 3 J -! DefUse 98% | 76% _ 84% | 76%
\ ' / DefUseFun 9M% | 77% 66% 82% 71%

 CodeTrek uses a declarative program analysis framework (Semmle) to produce a L o 0 0 0 0
. | . Prog y oL jo - The walk generator traverses the graph by biasing VAR AEE G M | MMw | 70% Sk Sl
rich, easily extensible representation of context as a relational database. . . :

« Semmle converts codebases in C, Java, Python, etc., into relational databases that traversal of edges according to neighbor's node type.

! ! T » If no bias is specified, walks are simply fair random walks. g CodeTrek produces robust models.

capture the underlying structure and semantics of code, as well as a query language,
CodeQL, for specifying program analyses to compute new semantic information.

« Different probability mixes for different node types

Sampling walks is a promising strategy for robustness.

id: el

 CodeQL enables CodeTrek to query code as if it were data. enlcouratg?[e ”;e kmodel to sample walks that are more
relevant to a task.
Input Python Program Schema of Python Programs 0.78
project: btorrent TABLE stm 0.57 0.51)
Semmle Compiler ID B vtAF({CHAFx(s) PRIMARY KEY, o 049 049 041 047
e CD VARGHAR(S) NOT NULL Embeddina Random Walk
1: import pickle S ’
i FOREIGN KEY (CID) REFERENCES scope(ID) mbedding kandom vvaiks
R o Relational Representation) .
oo s e G — e L R « To convert random walks to a distributed representation, Real-world VarMisuse Bugs (Accuracy) Mutated DefUse Programs (ROC-AUC)
. - See Reltions Scope VARCHAR(128) NOT NULL CodeTrek embeds each walk with N nodes ysing_ a W CodeTrek MWGGNN mCode2Seq M GREAT © CuBERT
| 1og-py : /Is;th -) >\/’—\ Transformer encoder, and then produces an order-invariant e CodeTrek is effective on long-range tasks.
~ in cope . .
100: eiass SyncTestCase. s1[except | c1 | [o1[test.py:130-138 Program Analysis Queries representation of the set of walks using the Deep Set . 9 derstanding task tasks that
130: Gef call chk() 2] assor [cP | loptestpy:a-i T architecture. The resulting hidden representation can then ong-range co e-tt)m erz an ,'n% fas St are 1asks tha
131: o = TestObject — d s g .
13, g oeetO N - - SELECT s, v be used to make predictions for the code-reasoning task. el szl egieiniel el slintglie TEIEIol; (24gk:
136: o.check() — = FROM stmt s, var v * Inter-procedural tasks (which exception to catch?)
137: except [??]: WHERE exists(expr e | e.defines(v) . .
138: errs.append() SID. Var, |_1D_Caler Calee and s.getSUbEx() = e (N) node types (N-1) edge types (N) node values * Global tasks (is any global variable shadowed?)
_//’\ ©
e — VIEW call [ID, Caler, Callee] AS stmt |scope| ... ||scope_stmt| ... | except| testpy | .. “call-graph” relations enable CodeTrek to make
subtokenize informed predictions in long-range tasks.
« CodeTrek interprets the produced relations as a graph. | node vocabulary| | edge vocabulary | oy ant! test | py Omit call-graph relation
 Each named tuple is represented by a node with the values of the tuple as its features. % o di/ accuracy g q 2
. Edges are added between these nodes such that the edge type R.A_S.B is defined for S & ST , In exception prediction tas ,
each referential integrity constraint R. A — S.B between nodes representing tuples of 9 Richness of semantic information available to
relations R and S. positional positional positional @ the model has a significant accuracy impact.

kind: call

Lencoding encoding @ encoding

scope: cl

id: s3
‘ S Concat ~ Rich Relational Graph Abstract Syntax Tree

scope stmt stmt xpr_stmt
pe_ Transformer
(BN - 1)
= = = jd: f2 id: a1l
name: call_chk caller: 2
func_scope scope: cl callee: f1
-call.caller_func.id= W = Pooling accuracy

3-35% points

id: s1 id: c1
kind: except scope:
scope: cl test.py:130-138

@scopestmt

