
CodeTrek: Flexible Modeling of Code
using an Extensible Relational Representation
Pardis Pashakhanloo1, Aaditya Naik1, Yuepeng Wang2, Hanjun Dai3, Petros Maniatis3, Mayur Naik1

Summary
• CodeTrek is a deep learning approach that represents codebases as databases
with rich relational schemas. CodeTrek embeds code using a set of walks that
can traverse different relations. The relational representation allows CodeTrek to
uniformly represent diverse kinds of program information and leverage program-
analysis queries to derive new semantic relations.

• CodeTrek outperforms state-of-the-art neural models by 2-19% points.

Codebase à Relational Database à Relational Graph

ResultsBiased Random Walks over Relational Graphs

Embedding Random Walks

• CodeTrek uses a declarative program analysis framework (Semmle) to produce a
rich, easily extensible representation of context as a relational database.

• Semmle converts codebases in C, Java, Python, etc., into relational databases that
capture the underlying structure and semantics of code, as well as a query language,
CodeQL, for specifying program analyses to compute new semantic information.

• CodeQL enables CodeTrek to query code as if it were data.

CodeTrek models perform better; especially on
long-range () and complex logic tasks ().

CodeTrek produces robust models.

CodeTrek is effective on long-range tasks.

Task CodeTrek GGNN Code2Seq GREAT CuBERT
VarMisuse 91% 69% – 82% 89%

VarMisuseFun 70% 54% 52% 89% 84%
Exception 63% 28% 30% 44% 42%

ExceptionFun 65% 51% 51% 68% 69%
DefUse 98% 76% – 84% 76%

DefUseFun 91% 77% 66% 82% 71%
VarShadow 94% 71% 70% 93% 91%

0.57

0.78

0.51 0.530.5
0.63

0.49 0.410.49 0.47

Real-world VarMisuse Bugs (Accuracy) Mutated DefUse Programs (ROC-AUC)

CodeTrek GGNN Code2Seq GREAT CuBERT

Sampling walks is a promising strategy for robustness.

• CodeTrek interprets the produced relations as a graph.
• Each named tuple is represented by a node with the values of the tuple as its features.
• Edges are added between these nodes such that the edge type R.A_S.B is defined for

each referential integrity constraint R.A → S.B between nodes representing tuples of
relations R and S.

Node type
Edge type

Node values

1University of Pennsylvania, 2Simon Fraser University, 3Google Brain

• To convert random walks to a distributed representation,
CodeTrek embeds each walk with N nodes using a
Transformer encoder, and then produces an order-invariant
representation of the set of walks using the Deep Set
architecture. The resulting hidden representation can then
be used to make predictions for the code-reasoning task.

• Context extraction from the resulting graph is done via
biased random walks over the graph, in a fashion
defined by a walk specification.

Richness of semantic information available to
the model has a significant accuracy impact.
Rich Relational Graph Abstract Syntax Tree

accuracy
3-35% points

• The walk generator traverses the graph by biasing
traversal of edges according to neighbor’s node type.

• If no bias is specified, walks are simply fair random walks.
• Different probability mixes for different node types
encourage the model to sample walks that are more
relevant to a task.

Task: Module-level Exception Prediction

Relations: { stmt, expr, exception-successor, call-graph, … }
Anchors: { n | n.type = stmt ∧ n.kind = except

∧ n.value= [HOLE] }
Biases: { exception-successor: 5, stmt: 3, expr: 3 }
Min: 4, Max: 16

Can be learned

Long-range code-understanding tasks are tasks that
require reasoning beyond a single function, e.g.,

• Inter-procedural tasks (which exception to catch?)
• Global tasks (is any global variable shadowed?)

“call-graph” relations enable CodeTrek to make
informed predictions in long-range tasks.

63% 52%Omit call-graph relationaccuracy
in exception prediction task

