CodeTrek: Flexible Modeling of Code using an Extensible Relational Representation

Pardis Pashakhanloo¹, Aaditya Naik¹, Yuepeng Wang², Hanjun Dai³, Petros Maniatis³, Mayur Naik¹ ¹University of Pennsylvania, ²Simon Fraser University, ³Google Brain

Summary

- CodeTrek is a deep learning approach that represents codebases as databases with rich relational schemas. CodeTrek embeds code using a set of walks that can traverse different relations. The relational representation allows CodeTrek to uniformly represent diverse kinds of program information and leverage programanalysis queries to derive new semantic relations.
- CodeTrek outperforms state-of-the-art neural models by **2-19%** points.

Codebase \rightarrow Relational Database \rightarrow Relational Graph

- CodeTrek uses a declarative program analysis framework (Semmle) to produce a rich, easily extensible representation of context as a relational database.
- Semmle converts codebases in C, Java, Python, etc., into relational databases that capture the underlying structure and semantics of code, as well as a query language, **CodeQL**, for specifying program analyses to compute new semantic information.
- CodeQL enables CodeTrek to query code as if it were data.

- CodeTrek interprets the produced relations as a graph.
- Each named tuple is represented by a **node** with the values of the tuple as its features.
- **Edges** are added between these nodes such that the edge type R.A_S.B is defined for each referential integrity constraint $R.A \rightarrow S.B$ between nodes representing tuples of relations R and S.

Programs								

Biased Random Walks over Relational Graphs

• Context extraction from the resulting graph is done via biased random walks over the graph, in a fashion defined by a **walk specification**.

- The walk generator traverses the graph by biasing traversal of edges according to neighbor's node type.
- If no bias is specified, walks are simply fair random walks.
- Different probability mixes for different node types encourage the model to sample walks that are more relevant to a task.

Embedding Random Walks

• To convert random walks to a distributed representation, CodeTrek embeds each walk with N nodes using a **Transformer** encoder, and then produces an order-invariant representation of the set of walks using the Deep Set architecture. The resulting hidden representation can then be used to make predictions for the code-reasoning task.

Results

CodeTrek models perform better; especially on long-range (<>) and complex logic tasks (<>).

	Task	CodeTrek	GGNN	Code2Seq	GREAT	CuBERT
	VarMisuse	<u>91%</u>	69%	—	82%	89%
	VarMisuseFun	70%	54%	52%	<u>89%</u>	84%
	Exception	<u>63%</u>	28%	30%	44%	42%
	ExceptionFun	65%	51%	51%	68%	<u>69%</u>
	DefUse	<u>98%</u>	76%	_	84%	76%
	DefUseFun	<u>91%</u>	77%	66%	82%	71%
	VarShadow	<u>94%</u>	71%	70%	93%	91%

CodeTrek produces robust models.

■ CodeTrek ■ GGNN ■ Code2Seq ■ GREAT ■ CuBERT

CodeTrek is effective on long-range tasks.

Long-range code-understanding tasks are tasks that require reasoning beyond a single function, e.g.,

- Inter-procedural tasks (which exception to catch?)
- Global tasks (is any global variable shadowed?)

"call-graph" relations enable CodeTrek to make informed predictions in long-range tasks.

