Learning to Walk over Relational Graphs of Source Code Go gle & Penn
Pardis Pashakhanloo!, Aaditya Naik!, Hanjun Dai?, Petros Maniatis?, Mayur Naik!

'University of Pennsylvania, ‘Google Brain

*
*
*
*
*
*
*
*
*
“
*

 Information-rich relational graphs have great potential in designing » Walks are Iat.ent..They are unobserved anc_i Igck supervision. Learning walk policies increases the accuracy.
source code representatlc_)ns. EX|§t|ng models, h.ow.ev.er’ struggle * A learned policy improves the overall predictive performance of the model. Learned policies are consistently better than policies set by
to handle the wealth of information due to their limited context | | | - | domain experts in bug classification tasks.
size. Sampling random walks over program graphs is useful in Walk learning can be viewed as an expectation-maximization (E-M) algorithm. |
addressing this challenge. | | okl LBpert Lleames
« We propose a deep learning technique to capture relevant context estimates the walk A Improves the current 1
over large program graphs. This technique improves upon random policy based on the current w model based on the S 08
walks by learning task-specific walk policies that guide the state of the model. sslmeied wels pelsy: S 06
traversal of the graph towards the most relevant context. Node types Edge types Values < 04 I
 Models that employ learned policies for guiding walks are 6-36% embedding embedding cmbedding 0
points more accurate than models that employ uniform random ~ i' T I P S P o
walks, and 0.2-3.5% points more accurate than models that h—— L — N— self-attention 9’\" &3’ +&Q’° @Q&\" §‘o & o ®
T I I C
employ expert knowledge for guiding the walks. ; | for walk w DR N O

The value of the score update parameter (v) should

attention weights not be too close to 0 or 1.
Designing a Walk Policy p N Random, yet Empirically, y = 0.5

expand & @ Poli .
olicy update: :
: : : . t d roduced the best results.
There are different strategies for sampling walks over relational graphs, ageresate - S’;ew];Z(fousg%ogsi 0.7 ?
stmt: A4 —
for example: expr: [0.2 S < VSnew (@ =¥)Sow training. . 0.6 _
Uniform Random Walks Expert-guided Walks var-10.001 v €[0,1] L
g 0.1 _) S D N_7
Simple calculation; Fewer unrelated walks; < () fg%g;g%glll;
Pros: No dependency on expert |nterpretab|e resu'ts This figure illustrates the where the pOIle IS Updated based on the aggregated 0.3 e '
relevance of relations in previous iterations of training. o 02 04 06 08 1
Score update parameter
Combinatorially large Overlooking unintuitive
Cons: . :
space of possible walks choices; Task-dependent

Discussion and Future Directions

Proposed solution: learn a policy to guide the random walks.

— Memory . — Scope of the Policy .
* We can take advantage of properties of relational graphs to design |
such a policy. The current mechanism for learning walk policies lacks memory * There are cases when a walk policy should learn edge scores rather
. The key components of relational databases have counterparts in which might hinder its ability to capture complex patterns. than node scores. For example, a "func” node may have different
relational graphs. L J relevance/importance dependlng on _Nhether. itis a C_aller or a callee.
* One could overcome this shortcoming by integrating edge values,
Tuples o s — Anchors 2 names, and walk lengths into the walk policy.
Relation names Node types The current mechanism requires the domain expert to specify the
Key-Foreign Key relationships Edge types anchor nodes. One could instead walk from the root (i.e., the top- — Interpreting Learned Policies w

level node in the program graph which corresponds to “module” or

“function”) and learn better anchor points from there. « VarShadow and DefUse can be solved via CodeQL queries.

» Interestingly, the highest-ranking relations are matched with tables

@ Walk Policy: we define a walk policy as a mapping Open questions: used in corresponding CodeQL queries.
- from each node type to a score, proportionate to its » How many nodes should be selected as anchors? - Using learned random walks to represent programs is a
@ .. relevance to a specific task. These scores specify « Should all anchor nodes for a particular task have the same relation promising direction toward more interpretable models for
........ " the next step in a random walk. names (i.e., node types)? code-understanding tasks.

