
Learning to Walk over Relational Graphs of Source Code
Pardis Pashakhanloo1, Aaditya Naik1, Hanjun Dai2, Petros Maniatis2, Mayur Naik1

Summary
• Information-rich relational graphs have great potential in designing
source code representations. Existing models, however, struggle
to handle the wealth of information due to their limited context
size. Sampling random walks over program graphs is useful in
addressing this challenge.

• We propose a deep learning technique to capture relevant context
over large program graphs. This technique improves upon random
walks by learning task-specific walk policies that guide the
traversal of the graph towards the most relevant context.

• Models that employ learned policies for guiding walks are 6-36%
points more accurate than models that employ uniform random
walks, and 0.2-3.5% points more accurate than models that
employ expert knowledge for guiding the walks.

Designing a Walk Policy

ResultsLearning a Walk Policy

Discussion and Future Directions

Learning walk policies increases the accuracy.

The value of the score update parameter (γ) should
not be too close to 0 or 1.

1University of Pennsylvania, 2Google Brain

0.2

0.4

0.6

0.8

1

VarM
isu

se

VarM
isu

se*

Ex
ce

ptio
n

Ex
ce

ptio
n*

OpMisu
se

DefU
se

DefU
se

*

VarS
had

ow

No Bias Expert Learned

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

• There are cases when a walk policy should learn edge scores rather
than node scores. For example, a "func" node may have different
relevance/importance depending on whether it is a caller or a callee.

• One could overcome this shortcoming by integrating edge values,
names, and walk lengths into the walk policy.

The current mechanism for learning walk policies lacks memory
which might hinder its ability to capture complex patterns.

The current mechanism requires the domain expert to specify the
anchor nodes. One could instead walk from the root (i.e., the top-
level node in the program graph which corresponds to “module” or
“function”) and learn better anchor points from there.

Open questions:
• How many nodes should be selected as anchors?
• Should all anchor nodes for a particular task have the same relation

names (i.e., node types)?

Scope of the PolicyMemory

Anchors

Walk Policy: we define a walk policy as a mapping
from each node type to a score, proportionate to its
relevance to a specific task. These scores specify
the next step in a random walk.

Proposed solution: learn a policy to guide the random walks.

There are different strategies for sampling walks over relational graphs,
for example:

• Walks are latent. They are unobserved and lack supervision.
• A learned policy improves the overall predictive performance of the model.

• We can take advantage of properties of relational graphs to design
such a policy.

• The key components of relational databases have counterparts in
relational graphs.

Tuples
Relation names

Key-Foreign Key relationships

Node values
Node types
Edge types

E step estimates the walk
policy based on the current

state of the model.

M step improves the current
model based on the

estimated walk policy.

Walk learning can be viewed as an expectation-maximization (E-M) algorithm.

This figure illustrates the E step where the policy is updated based on the aggregated
relevance of relations in previous iterations of training.

…

softmax

expand &
aggregate

Node types
embedding

self-attention
for walk w

0.4
0.2

0.001
0.1
…

Policy update:

S ← 𝛾𝑆!"# + 𝑎 − 𝛾 𝑆$%&stmt:
expr:

𝑆!"#

var:

…

𝛾 ∈ [0, 1]

… …

Edge types
embedding

Values
embedding

attention weights

Interpreting Learned Policies

Ac
cu

ra
cy

Empirically, γ = 0.5
produced the best results.

Score update parameter

Learned policies are consistently better than policies set by
domain experts in bug classification tasks.

Sampling fair
random walks.

Random, yet
fixed scores
throughout
training.

Ac
cu

ra
cy

• VarShadow and DefUse can be solved via CodeQL queries.
• Interestingly, the highest-ranking relations are matched with tables

used in corresponding CodeQL queries.
• Using learned random walks to represent programs is a

promising direction toward more interpretable models for
code-understanding tasks.

Uniform Random Walks Expert-guided Walks

Pros:
Simple calculation;

No dependency on expert
Fewer unrelated walks;

Interpretable results

Cons: Combinatorially large
space of possible walks

Overlooking unintuitive
choices; Task-dependent

