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Summary
• Information-rich relational graphs have great potential in designing
source code representations. Existing models, however, struggle
to handle the wealth of information due to their limited context
size. Sampling random walks over program graphs is useful in
addressing this challenge.

• We propose a deep learning technique to capture relevant context
over large program graphs. This technique improves upon random
walks by learning task-specific walk policies that guide the
traversal of the graph towards the most relevant context.

• Models that employ learned policies for guiding walks are 6-36%
points more accurate than models that employ uniform random
walks, and 0.2-3.5% points more accurate than models that
employ expert knowledge for guiding the walks.

Designing a Walk Policy

ResultsLearning a Walk Policy

Discussion and Future Directions

Learning walk policies increases the accuracy.

The value of the score update parameter (γ) should 
not be too close to 0 or 1.
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• There are cases when a walk policy should learn edge scores rather 
than node scores. For example, a "func" node may have different 
relevance/importance depending on whether it is a caller or a callee.

• One could overcome this shortcoming by integrating edge values, 
names, and walk lengths into the walk policy.

The current mechanism for learning walk policies lacks memory 
which might hinder its ability to capture complex patterns.

The current mechanism requires the domain expert to specify the 
anchor nodes. One could instead walk from the root (i.e., the top-
level node in the program graph which corresponds to “module” or 
“function”) and learn better anchor points from there.

Open questions:
• How many nodes should be selected as anchors?
• Should all anchor nodes for a particular task have the same relation 

names (i.e., node types)?

Scope of the PolicyMemory

Anchors

Walk Policy: we define a walk policy as a mapping 
from each node type to a score, proportionate to its 
relevance to a specific task. These scores specify 
the next step in a random walk.

Proposed solution: learn a policy to guide the random walks.

There are different strategies for sampling walks over relational graphs,
for example:

• Walks are latent. They are unobserved and lack supervision.
• A learned policy improves the overall predictive performance of the model.

• We can take advantage of properties of relational graphs to design 
such a policy.

• The key components of relational databases have counterparts  in 
relational graphs.

Tuples
Relation names

Key-Foreign Key relationships

Node values
Node types
Edge types

E step estimates the walk 
policy based on the current 

state of the model.

M step improves the current 
model based on the 

estimated walk policy.

Walk learning can be viewed as an expectation-maximization (E-M) algorithm.

This figure illustrates the E step where the policy is updated based on the aggregated 
relevance of relations in previous iterations of training.
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Policy update:

S ← 𝛾𝑆!"# + 𝑎 − 𝛾 𝑆$%&stmt:
expr:

𝑆!"#

var:

…
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Interpreting Learned Policies
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Empirically, γ = 0.5 
produced the best results.

Score update parameter

Learned policies are consistently better than policies set by 
domain experts in bug classification tasks.

Sampling fair 
random walks.

Random, yet 
fixed scores 
throughout 
training.
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• VarShadow and DefUse can be solved via CodeQL queries.
• Interestingly, the highest-ranking relations are matched with tables 

used in corresponding CodeQL queries.
• Using learned random walks to represent programs is a

promising direction toward more interpretable models for
code-understanding tasks.

Uniform Random Walks Expert-guided Walks

Pros:
Simple calculation;

No dependency on expert
Fewer unrelated walks;

Interpretable results

Cons: Combinatorially large 
space of possible walks

Overlooking unintuitive
choices; Task-dependent


