A

PACJAM: Securing
Dependencies Continuously via
Package-Oriented Debloating

&

| R

Pardis Pashakhanloo, Aravind Machiry, Hyonyoung Choi,
Anthony Canino, Kihong Heo, Insup Lee, and Mayur Naik.

e gk
AROTEOF s
S N
/é\"\/' NG
& 2 a
§ KAIST 2 '
&l =
S\ 9
O S
) I\ N
F3 Y4
Lygne>

O Sl

MODERN SOFTWARE = ONE-SIZE-FITS-ALL

Dwg @ 5 B

@ python® “pm aP’c—g@‘t

PIP

SOFTWARE DEBLOATING

Removal of code artifacts that are not needed for any or
certain use-cases.

Various
granularities

Instructions

Chisel

Basic blocks

BinTrimmer OCCAM Razor

Functions

Blanklt PieceWise

PRACTICAL SOFTWARE DEBLOATING?

Configurable Fallback Full Specs not No Extra Runtime Rapid Security
Mechanism Required Requirements Response

PACJAM:
ADDRESS SOFTWARE BLOAT AT THE PACKAGE-LEVEL

Debloating at the package level enables a generic debloating solution that is applicable
to a wide range of applications.

PacJam is a package-level debloating framework that overcomes the mentioned

limitations. PacJam,
o removes all statically unreachable packages (58% of packages per

application),
removes reachable but unused packages (8% of packages per application),
o and disables/enables packages on demand (shadow packages)

Example:
65% of Firefox's dependent packages are not required!

App

OVERVIEW OF PACJAM

O Load Sanitized
5 *'f‘ Package

Shadow Package H

Required
Shadow Package D At

1 Execution

Post-Deployment
Policy

Dependency Graph

Resume
Execution

D ."' [
Debloated T =E

1
Required % f- -
-. Packages Installation REA
——— Ri:c;;;?e'tty Package Installer p !
D Original Patch
-, Available
+.+ Shadow
Usage Scenario Shadow Package D Sanitized
DB bB Secure Dependency
CVE Lifecycle
Discovered .
Adaptive Package Installer B: . \f

® N B

= Dependency
autorespond H Disabled

& DEPENDENCY GRAPH

PacJam maintains the information of all dependencies between packages.

Direct dependencies of each package are available from the specified
application metadata.

From this information, PacJam computes all indirect dependencies.

Example:
- VLC 3.0.2 for Debian has 479 dependent packages, 10 of which are direct
H dependencies. 324 out of 479 are statically reachable.

@ USAGE SCENARIO DATABASE

PacJam captures application features by observing which dependent
packages the application uses under each usage scenario.

‘ Common use cases
‘ Application tutorials

Questions from Stack-Overflow

We construct a usage
scenario database for
each application from:

‘ Developer-provided test suite

Example:
For VLC, we collected 299 media files to include as many supported media formats as possible.

Among the 155 dependent packages with shared libraries identified by the static analyzer, only
134 dependent packages with shared libraries are exercised to play all the collected media files.

€) SHADOW PACKAGE DATABASE

Shadow Package is a stripped-down version of an original package which
does not provide any functionalities but a stub. The stub allows seamless
execution of the application in cases where the code in the original
package is required.

For each package, PacJam generates the shadow and sanitized
versions along with the original version. This allows automating the
secure dependency life-cycle.

PacJam creates gutless ABI-compatible mock libraries,

which we call HiEL LIWVATJETEN that belong in part to
Elgelslgshadow packages:

Example:
PacJam initially installs 134 packages for VLC to support of the usage scenarios. For the
remaining 187 packages, it instead installs the shadow version.

© POST-DEPLOYMENT POLICY

If an input requires the execution of a shadow package, our stub in the
shadow package loads the sanitized version of the package and propagates
execution to it.

This default behavior of installing sanitized packages can be changed by using
various post-deployment policies.

A Example 1:
s A new vulnerability (CVE-2019-136159) is discovered. autorespond identifies that the
l y corresponding vulnerable package is libebml and informs the package installer about
. | libebml to disable it.

Example 2:

In VLC, if the sanitized version of libebml is used instead of the original libebml, the average
runtime overhead over all the test cases is less than 200ms, and over the test cases specifically
using this package is less than 1s.

@ POST-DEPLOYMENT POLICY

Restart App On-demand Package Installer
LN
1
__1x_
Permissive
/ Decay

S/O

S/O
Onetime‘ T
L Strict @ Halt

—

Shadow libraries allow customizing installations using PD policies that trap executions into
removed functionality, called fault, and respond based on one of the following modes:

Strict Mode Onetime Mode Decay Mode Permissive Mode

SEGURE DEPENDENCY LIFECYGLE

We provide a suite of automation tools called autorespond, that maintains a

secure dependency environment.

PacJam realizes continuous secure dependency
lifecycle by integrating with existing vulnerability
databases or discovering systems such as the CVE
database, GitHub security alerts, or OSS-Fuzz.

PacJam bridges the gap between continuing to
provide an application service with a known
vulnerability and disabling the application until
such a vulnerability is fixed.

Available

- SR

Secure Dependency M
CVE Lifecycle .
Discovered L ﬁ
R i
(=) a i

Dependency

- =}
= .
autorespond ‘Df Disabled

RQI. Static Reachability
RQ2. Dynamic Reachability
RQ3. Fallback Mechanism

RQ4. autorespond

EVALUATION METHODOLOGY

Benchmark Suite: 10 widely-used Linux applications.

Usage Scenarios

Vulnerability Data

Benchmark (Debian) Test Cases

Information about each package’s
known vulnerabilities, i.e., CVEs
collected from CVE databases.

Attack Surface

bc-1.07.1 257
gawk-4.2.1 329
wget-1.20.1 461
curl-7.64.0 661
git-2.20.1 740
xpdf-3.04 100
firefox-68.2 500
chromium-57 500
gimp-2.10.8 121
vlc-3.0.2 299

The number of CVEs and code reuse
gadgets in its dependent packages.

[RQ1] EFFECTIVENESS OF STATIC REACHABILITY

We measure the effectiveness of PacJam at removing statically unreachable
packages in terms of the number of removed dependencies, CVEs, and gadgets.

Benchmark Present in apt installation | Reduced by PacJam (Static)

(Debian) Deps (V) CVEs(C) Gadgets(G) | Deps (% of V) Indirect Deps CVEs(%ofC) Gadgets (% of G)
bc-1.07.1 14 30 21,522 10 (71%) 9 13 (43%) 12,863 (60%)
gawk-4.2.1 15 29 26,520 12 (80%) 10 16 (55%) 22,388 (84%)
wget-1.20.1 39 50 143,355 22 (56%) 22 26 (52%) 104,978 (73%)
curl-7.64.0 50 68 168,433 23 (46%) 23 22 (32%) 69,024 (41%)
git-2.20.1 56 75 164,823 27 (48%) 27 25 (34%) 122,830 (75%)
xpdf-3.04 92 154 263,879 53 (58%) 53 51 (31%) 196,095 (74%)
firefox-68.2 187 182 717,451 t/o t/o t/o t/o
chromium-57 152 513 338,005 75 (49%) 75 121 (46%) 181,334 (54%)
gimp-2.10.8 250 289 901,662 155 (62%) 149 85 (33%) 696,648 (77%)
vlc-3.0.2 321 374 1,361,996 155 (48%) 150 122 (33%) 699,309 (50%)
Average 58% 40% 66%

On average, PacJam removes 58% of packages across all the applications.

[RO2] EFFECTIVENESS OF DYNAMIC REACHABILITY

PacJam can debloat applications further by removing dynamically unreachable
packages for a given set of use cases.

Benchmark | Reduced by PacJam (Dynamic) | Piece-Wise
(Ubuntu) | Uniq ROP JOP COP | Uniq ROP JOP cor
bc-1.06.95 76.6% 80.1% 78.2% 74.8% 75.0% 73.7% 77.8% 77.4%
gawk-4.1.3 48.9% 58.6% 53.6% 41.5% 42.6% 41.4% 47.4% 43.1%
wget-1.17.1 59.8% 60.0% 55.1% 53.7% 56.0% 56.4% 54.8% 56.0%
curl-7.47.0 61.5% 58.8% 57.2% 48.8% 55.7% 57.2% 51.6% 49.0%
git-2.7.4 71.5% 79.8% 55.4% 35.4% =¥ = S =
xpdf-3.04 76.5% 791% 70.9% 72.0% 74.8% 76.0% 722% 71.2%
firefox-84.0.2 79.9% 83.7% 64.1% 48.7% - N - -
chromium-87.0 76.8% 75.5% 63.8% 67.7% 73.1% 75.8% 63.0% 62.3%
gimp-2.8.16 78.1% 80.5% 77.2% 76.9% 79.5% 80.2% 76.2% 76.5%
vic-2.2.2 76.9% 79.4% 71.3% 71.4% 75.0% 74.7% 76.2% 75.0%
Average 71% 74% 65% 59% 66% 67% 65% 64%

Debloating dynamically unreachable packages, removes an additional 8%.
~30% of vulnerabilities that PacJam prevents are of high severity.

[RQ3] EFFECTIVENESS OF FALLBACK MECHANISM

Due to incompleteness, static and dynamic unreachability analyses may
fail to predict that some packages are required. Therefore, a fallback
mechanism is required to deal with these cases.

Time overhead (ms)

45

30

22¢

—— Vlcp,e - Avg overhead 0.01%
—#— Vlcpjy - Avg overhead 2%

0 10

20 30 40 50

Test case number

VLCIC>iVV PieceWise-debloated VLC

VLCIoac PacJam-debloated VLC

[RQ4] EFFECTIVENESS OF AUTORESPOND

How effectively does autorespond attend to unpatched
vulnerabilities?

% of functionality reduction

100

90 |-
80 -

70
60
50
40
30
20
10

——

——
——
g
|- -
@ -
S

|| g

—m— firefox
—e— chrome

xpdf

gimp
vlc
bc
gawk
wget
curl
git

~—m

4% *—+ ®
20 30 40 50 60 70 80 90 100

Sometimes, vulnerable packages can be removed
without compromising any common use case.

Example:
CVE-2017-5130 in libxml2.

@

Sometimes, disabling certain vulnerable packages
affects 100% of an application’s functionality.
Example:
@ CVE-2018-14550 in libpng.

RECAP

We presented a package-oriented debloating framework, PacJam, for
adaptive and security-aware management of an application’s dependent
packages.

PacJam enables package-level removal of security vulnerabilities in a manner
that minimizes disruption to the application’s desired usage scenarios.

Our experiments on a suite of 10 widely used Linux applications demonstrate
that PacJam can effectively debloat applications and provide rapid response

to newly discovered vulnerabilities in already installed packages.

Thank you!

