from torchvision import datasets
import torchvision.transforms as transforms

transform = transforms.ToTensor()

train_data = datasets.MNIST(root='data',
 train=True,
 transform=transform)

similarly for test_data (train=False)

train_loader = torch.utils.data.DataLoader(
 train_data,
 batch_size=b_size,
 num_workers=workers)

Inspecting the data:

one_batch_of_the_data = dataiter = iter(train_loader)
images, labels = dataiter.next()
images = images.numpy()
```python
# Defining the Model:
import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(28*28, 512)
        self.fc2 = nn.Linear(512, 512)
        self.fc3 = nn.Linear(512, 10)
        self.dropout = nn.Dropout(0.2)

def forward(self, x):
    flatten = x = x.view(-1, 28*28)
    apply_layer = x = F.relu(self.fc1(x)) ; x = self.dropout(x)
    same for fc2.
    x = self.fc3(x)
    return x
```
Question: Why do we need activation functions?

To scale the outputs of a layer so that they are a consistent, small value.

```python
model = Net()
Criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.01)
# Finally, train the model!
n_epochs = 30  # Start small!

for epoch in range(n_epochs):
    train_loss = 0
    for data, target in data_loader:
        optimizer.zero_grad()  # Clear all the gradients
        output = model(data)  # Forward pass
        loss = criterion(output, target)  # Compute loss
        loss.backward()  # Backward propagation
        optimizer.step()  # Parameter update
        train_loss += loss.item() * data.size(0)
    train_loss = train_loss / len(train_loader.dataset)
```
```python
# test!
model.eval()
for data, target in test_loader:
    output = model(data)
    loss = criterion(output, target)
    test_loss += loss.item() * data.size(0)
    pred = torch.max(output, 1)
    correct =
        np.squeeze(pred.eq(target.data.view_as(pred)))

* Question: nn.CrossEntropy, does both of Softmax and NLLLoss. What if we want the output of the model as class probabilities instead of scores?
Answer: use Softmax and NLLLoss separately.

for i in range(batch_size):
    label = target.data[i]
    class_correct[label] += correct[i].item()
    class_total[label] += 1

test_loss = test_loss / len(test_loader.dataset)
```
for i in range(num_classes):
 if class_total[i] > 0:
 accuracy[i] = np.sum(class_correct[i]) / np.sum(class_total[i])

overall_accuracy = np.sum(class_correct) / np.sum(class_total)
Model Validation

from torch.utils.data.sampler import SubsetRandomSampler
we use this to sample some validation data

train_Sampler = SubsetRandomSampler(train_idx)
valid_Sampler = SubsetRandomSampler(valid_idx)

train_loader (as before, sampler=train_Sampler)
we do the same for valid_Sampler.

Question: why do we need validation?
Answer: knowing when to stop training to avoid overfitting
(when valid_loss starts increasing but train_loss keep decreasing)
OpenCV

```python
import cv2
import numpy as np
import matplotlib.image as mpimg

load image = mpimg.imread('img.png')
make black/white gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)

the filter filt = np.array([[-1, -2, -1],
                           [0, 0, 0],
                           [1, 2, 1]])

convolute filtered_image = cv2.filter2D(gray, -1, filt)
```